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Bounded Fluctuations and Translation Symmetry
Breaking: A Solvable Model
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The variance of the particle number (equivalently the total charge) in a domain
of length % of a one-component plasma (OCP) on a cylinder of circumference
W at the reciprocal temperature =2, is shown to remain bounded as .¥ — oo.
This exactly solvable system with average density p has a density profile which
is periodic with period (pW)~! along the axis of the infinitely long cylinder.
This illustrates the connection between bounded variance and periodicity in
(quasi) one-dimensional systems.”’ When W — oo the system approaches the
two-dimensional OCP and the variance in a domain 4 grows like its perimeter
|04]. In this limit, the system is translation invariant with rapid decay of
correlations.

KEY WORDS: Coulomb systems; bounded fluctuations; translation sym-
metry breaking.

1. INTRODUCTION AND SUMMARY OF PREVIOUS WORK

Aizenman, Goldstein, and Lebowitz") have shown that bounded fluctuations
in a one-dimensional one-component particle system imply the existence of
a periodic structure. The present note illustrates this general property in a
quasi one-dimensional system: the two-dimensional one-component plasma
on the surface of a cylinder. This system is exactly solvable at the reciprocal
temperature =2, where it was studied by Choquard, Forrester, and
Smith.**

The finite volume model is defined as follows. There are N particles of
unit charge on the surface of a cylinder of circumference W and length L.
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The coordinates of a particle are r=(x, y) such that —L/2<x<L/2,
—W/2<y<WJ/2. 1t is convenient to use also the complex coordinate
z=Xx+iy.

The interaction energy ¢(r;, r,) between two particles at r; and r, is
a two-dimensional Coulomb potential required to be periodic in y with
period W:

#(ry, 1) = —In 2sinhn(227[;zl) (1)

(this is equivalent to Eq. (4) of ref. 3). There is also a neutralizing back-
ground and the full Hamiltonian also includes particle-background and
background-background interactions. At small distances |r,—r,| << W
the interaction (1) behaves like the two-dimensional Coulomb interaction
—In |r, —r,|, while at large distances along the cylinder |x, — x| > W it
behaves like the one-dimensional Coulomb interaction — (/W) |x, — x,4].
At the special value, =2 of the inverse temperature, the model is exactly
solvable. It can be regarded as a variant of the strictly one-dimensional
one-component plasma,“® with however a more explicit solution.

Choquard et al. calculated the one and two-particle distribution func-
tions and their limits when N, L — co, where p = N/LW stays constant. In
this limit the one-particle distribution function, i.e., the density, is a peri-
odic function of x with period 1/pW: it is a sum of equidistant identical
Gaussians. The location of the centers of the Gaussians depends on the
way the L — oo limit is taken. If this limit is defined by the sequence of odd
values of N, then one of the Gaussians stays centered at x =0. If, on the
contrary, the thermodynamic limit is defined by the sequence of even
values of N, the whole array of Gaussians is shifted by half a period and
the origin is in the middle between two Gaussians. (It is also possible to
take limits along sequences which don’t keep the density exactly constant
or use periodic boundary conditions along the x-axis. The latter would
yield a translation invariant density corresponding to a uniform superposi-
tion of periodic ones).

In the following we shall, without loss of generality, concentrate on
the case of odd values of N. Defining reduced values of the coordinates
(=pWx, A=(y,— y,)/W, and putting &= pW?, the limit along such an
odd sequence yields® the density

2 1/2 9]
BT expl 2] @)

I=—o0

n(x) =
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and the truncated two-particle distribution function

2
PR r2) = — ey expl ~n(Ca— C1)E]

T exp [ . <C‘+252— z>2/¢} + 27il)

I=—o0

2
X

(3)

In the limit W — oo, the sums on / in (2) and (3) can be replaced by
integrals and it can be easily checked that one recovers the expressions
appropriate for a two-dimensional system in the whole plane, i.e., n(x)=p

and® pT= —p2exp[ —mp(r,—r;)?].

2. VARIANCE OF THE CHARGE IN AN INTERVAL

We now calculate the variance of the net charge, which here is equal
to the variance { N2» — { N,;>? of the number of particles N; in some inter-
val I of the cylinder of circumference W and length . We show that this
variance remains uniformly bounded as % increases and has a limit when
% — oo along specified sequences.

After integration upon the y coordinates, one obtains the one-dimen-
sional density Wn(x) and the truncated two-particle density (when con-
venient, we use the reduced variable { = p Wx instead of x):

w2 w2
RT(ChCz):f dylj dy2pT(r1,r2)
2 w2

el —n(a-0PE] 3 x| —an(BFE0) ]
)

For simplicity, we choose the extremities of the interval 7 at the centers
of two of the Gaussians, e.g., I is the interval 0 <{<m, where m is some
positive integer. The variance in [ is then given by

(ND —<Np?

m/pW

e [ [, R )

—( /) ©
ff du exp[[ — mﬂ/f]f Y exp[ —4n(v—1)%/¢]
= (5)
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where u={,—{; and v=({; +{,)/2, and the symmetry between {; and {,
has been taken into account.

The integral on v can be written as the difference between integrals in
the ranges (—(u/2), m—(u/2)) and (—(u/2), (#/2)). The first one, when
combined with the sum on / like in (7), gives m times the integral of a
Gaussian from — oo to oo which has a simple value. In the second one, one
takes into account that the sum on / is an even function of v. One finally
obtains for the variance in I,

(N3 = (N2 =m <1 ~267 [ du expl —nu%])
0

8 rm u/2 0
+—j duexp[—nuz/g]f dv Y exp[ —dn(v—1)%/¢]
S © e (6)

The variance (6) is clearly bounded uniformly in m and its limit as
m— oo is given by

(N7> —={Np?
_>§joo du exp[ —mu?/E] fu/zdv OZO: exp[ —4n(v—1)%/&] (7)
m= e é 0 0 I=—o0

(the first term in the r.h.s. of (6) goes to 0 as m — o).

3. SMALL AND LARGE CIRCUMFERENCE LIMITING CASES

The variance (7) depends on the cylinder circumference W through
&= pW?2 Let us investigate limiting cases.

3.1. Small Circumference

For W— 0, only the /=0 term contributes to (7). The resulting double
integral can be evaluated by rescaling the variables as ué~'?>—u and
20E~12 - v, and using the symmetry of the integrand in the new u, v coor-
dinates, with the result

lim [(N7)—<(Np?]=3 (8)
wW—0

The result (8) has a simple interpretation. For small &, each Gaussian
in (2) becomes a narrow peak while R” is such that there is one particle
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in each peak and these particles are otherwise uncorrelated. The system
behaves like a one-dimensional one-component plasma at zero temperature
since the interaction behaves like —(n/W) |x,—x,;| with W— 0. The
variance is thus entirely due to the particles located near each end of the
interval . Each of these particles has a probability 1/2 of being inside 7 and
thus contributes 1/4 to the variance of N,.

3.2. Large Circumference

For large &, the sum on / in (7) can be replaced by an integral which
is just £'2/2. One finds a variance which increases with W as

(ND —XNp*:~(p'Pm) W 9)

This is the variance expected® for a large two-dimensional one-com-
ponent plasma at =2 with a boundary length 2.

4. ANOTHER CHOICE OF INTERVAL

The choice of intervals of Section 3 is likely to generate the largest
possible variance. For illustrating that the variance in a large interval 7 is
very sensitive to the precise positions of the extremities, we now choose
these extremities in the middle between two adjacent Gaussians. For
instance, [ is the range 1/2 <{<m+ (1/2). Calculations similar to the ones
in Section 3 now lead to

(N7 —<{Np?

—m <1 -1 jm du exp[ —nuz/é]>
0

(u+1)/2 ©
f duexp[—mﬂ/é]f : Z eXp[—47‘[(U—[)2/é]
(— u+1)/2 J=—oo
(10)
In the limit m — oo,
(N3>—<Np?
—>ﬂdeuexp[—nuz/f]ruﬂ)/z do Y expl —dn(o—1E] (1)
¢ o (—u+1)2  _ o

For small &, (11) is dominated by the terms /=0 and /=1, and the
variance has a factor exp(—=n/£) which vanishes exponentially as W — 0.
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This is as expected, since the density vanishes as a Gaussian tail at the
extremities of the interval [, through which particles enter or leave /.

For large W, the variance is still given by (9). In that limit the density
oscillations disappear and the precise locations of the extremities of 7
become irrelevant.
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